Predictability of phenotypic differentiation across flow regimes in fishes.

نویسنده

  • R Brian Langerhans
چکیده

Fish inhabit environments greatly varying in intensity of water velocity, and these flow regimes are generally believed to be of major evolutionary significance. To what extent does water flow drive repeatable and predictable phenotypic differentiation? Although many investigators have examined phenotypic variation across flow gradients in fishes, no clear consensus regarding the nature of water velocity's effects on phenotypic diversity has yet emerged. Here, I describe a generalized model that produces testable hypotheses of morphological and locomotor differentiation between flow regimes in fishes. The model combines biomechanical information (describing how fish morphology determines locomotor abilities) with ecological information (describing how locomotor performance influences fitness) to yield predictions of divergent natural selection and phenotypic differentiation between low-flow and high-flow environments. To test the model's predictions of phenotypic differentiation, I synthesized the existing literature and conducted a meta-analysis. Based on results gathered from 80 studies, providing 115 tests of predictions, the model produced some accurate results across both intraspecific and interspecific scales, as differences in body shape, caudal fin shape, and steady-swimming performance strongly matched predictions. These results suggest that water flow drives predictable phenotypic variation in disparate groups of fish based on a common, generalized model, and that microevolutionary processes might often scale up to generate broader, interspecific patterns. However, too few studies have examined differentiation in body stiffness, muscle architecture, or unsteady-swimming performance to draw clear conclusions for those traits. The analysis revealed that, at the intraspecific scale, both genetic divergence and phenotypic plasticity play important roles in phenotypic differentiation across flow regimes, but we do not yet know the relative importance of these two sources of phenotypic variation. Moreover, while major patterns within and between species were predictable, we have little direct evidence regarding the role of water flow in driving speciation or generating broad, macroevolutionary patterns, as too few studies have addressed these topics or conducted analyses within a phylogenetic framework. Thus, flow regime does indeed drive some predictable phenotypic outcomes, but many questions remain unanswered. This study establishes a general model for predicting phenotypic differentiation across flow regimes in fishes, and should help guide future studies in fruitful directions, thereby enhancing our understanding of the predictability of phenotypic variation in nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting evolution with generalized models of divergent selection: a case study with poeciliid fish.

Over the past century and half since the process of natural selection was first described, one enduring question has captivated many, "how predictable is evolution?" Because natural selection comprises deterministic components, the course of evolution may exhibit some level of predictability across organismal groups. Here, I provide an early appraisal of the utility of one particular approach t...

متن کامل

Natural flow regimes, nonnative fishes, and native fish persistence in arid-land river systems.

Escalating demands for water have led to substantial modifications of river systems in arid regions, which coupled with the widespread invasion of nonnative organisms, have increased the vulnerability of native aquatic species to extirpation. Whereas a number of studies have evaluated the role of modified flow regimes and nonnative species on native aquatic assemblages, few have been conducted ...

متن کامل

Assessing genetic diversity of populations of bartail flathead (Platycephalus indicus Linnaeus, 1758) in the Northern part of the Persian Gulf using AFLP markers

Genetic diversity of six populations of bartail flathead (Platycephalus indicus Linnaeus, 1758) was investigated using amplified fragment length polymorphism (AFLP). A total of 118 reproducible bands amplified with ten AFLP primer combinations were obtained from 42 fishes that were collected from six different locations in the northern part of the Persian Gulf. The percentage of polymorphic ban...

متن کامل

Assessing genetic diversity of populations of bartail flathead (Platycephalus indicus Linnaeus, 1758) in the Northern part of the Persian Gulf using AFLP markers

Genetic diversity of six populations of bartail flathead (Platycephalus indicus Linnaeus, 1758) was investigated using amplified fragment length polymorphism (AFLP). A total of 118 reproducible bands amplified with ten AFLP primer combinations were obtained from 42 fishes that were collected from six different locations in the northern part of the Persian Gulf. The percentage of polymorphic ban...

متن کامل

Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats

Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative and comparative biology

دوره 48 6  شماره 

صفحات  -

تاریخ انتشار 2008